# Problem 1: Using The Block Diagram Reduction Technique To Simplify The Block Diagram Shown Below And Obtain The Closed-loop Transfer Function C(s)/R(s).Problem 2: Using The Block Diagram Reduction Technique To Find The Closed-loop Transfer Function Of The System Shown Below, Y(s)/R(s).

**Transcribed Text:**

Question: Problem 1: Using the block diagram reduction technique to sim…

(2 bookmarks)

Problem 1: Using the block diagram reduction technique to simplify the block diagram shown below and obtain the closed-loop transfer function

R(S)

Problem 2: Using the block diagram reduction technique to find the closed-loop transfer function of the system shown below,

Show transcribed image text View comments (8) ►

Expert Answer

rezaahmed answered this 573 answers

Was this answer helpful?

B3 Be

Problem-1

Signal

flow

graph.

RIS

Cs

P, a Gq G2 G3. P2= G, G3 Hi LE – G2 Hz (2c = G2 G3H3 lize – GiGzG

= – G, G Hi

G, GzG3 + G, G H I 1- [-Gatz – GzG3 Hz –G, GG – GIGSH;]

CO2

G, G3 ( G2 + H) 1+ G2th + G2 G2 Hz +G;G;G +G, GH, Aus

R(S)

Prolem-2

yos

P, = G, GGz . , P2 – G, G4 . (4 -G, G2 High- – GzG3 Hz Lz = – GA Hz, Lac – G, G2 G3 Lga – G, G4.

C (sa

G, G2 G3 + G, Go

YES) RES) =

1-[-G, G2H – G2 G3th -G4 H2 – G, G2 G3

– GiGa 2

Gel ( G2 G3 +Gq)

Y(s) R(S) =

1+ G, G2 Hi + ER E3th + G4 Hz + G G2 G3 +G G4.